

 Navigation

 	
 index

 	
 next |

 	brian2tools documentation

brian2tools documentation

The brian2tools package is a collection of useful tools for
the Brian 2 simulator [https://brian2.readthedocs.org]. The project
is still in its infancy but it already provides helpful functions
for plotting and exporting a neural model to the
NeuroML2 format [https://neuroml.org/neuromlv2]. In the future it will be
extended to also provide analysis and additional export/import functions.

Please contact us at
brian-development@googlegroups.com (https://groups.google.com/forum/#!forum/brian-development)
if you are interested in contributing.

Please report bugs at the github issue tracker [https://github.com/brian-team/brian2tools/issues] or to
briansupport@googlegroups.com (https://groups.google.com/forum/#!forum/briansupport).

Contents

	Release notes

	User’s guide
	Installation instructions

	Plotting tools

	NeuroML exporter

	Developer’s guide
	Coding guidelines

	NeuroML exporter

	Release procedure

API reference

	brian2tools package
	brian2tools.nmlexport package
	brian2tools.nmlexport.cgmhelper module

	brian2tools.nmlexport.lemsexport module

	brian2tools.nmlexport.lemsrendering module

	brian2tools.nmlexport.supporting module

	brian2tools.plotting package
	brian2tools.plotting.base module

	brian2tools.plotting.data module

	brian2tools.plotting.morphology module

	brian2tools.plotting.synapses module

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

Release notes

brian2tools 0.2.1

This release adds initial support to export Brian 2 simulations to the
NeuroML2 [https://neuroml.org/neuromlv2] and
LEMS [http://lems.github.io/LEMS/] format. This feature has been added by
Dominik Krzemiński (@dokato [https://github.com/dokato]) as part of the
Google Summer of Code [https://summerofcode.withgoogle.com/] 2016 under the
umbrella of the INCF [https://www.incf.org/] organization. It currently
allows to export neuronal models (with threshold, reset and refractory
definition), but not synaptic models or multi-compartmental neurons. See the
NeuroML exporter documentation for details.

Contributions

	Dominik Krzemiński (@dokato [https://github.com/dokato])

	Marcel Stimberg (@mstimberg [https://github.com/mstimberg])

We also thank Padraig Gleeson (@pgleeson [https://github.com/pgleeson/]) for
help and guidance concerning NeuroML2 and LEMS.

brian2tools 0.1.2

This is mostly a bug-fix release but also adds a few new features and improvements around the plotting of synapses
(see below).

Improvements and bug fixes

	Synaptic plots of the “image” type with plot_synapses (also the default for
brian_plot for synapses between small numbers of neurons) where plotting a transposed
version of the correct connection matrix that was in addition potentially cut off and therefore not showing all
connections (#6 [https://github.com/brian-team/brian2tools/issues/6]).

	Fix that brian_plot was not always returning the Axes [http://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes] object.

	Enable direct calls of brian_plot with a synaptic variable or an indexed
StateMonitor [https://brian2.readthedocs.org/en/2.0rc/reference/brian2.monitors.statemonitor.StateMonitor.html#brian2.monitors.statemonitor.StateMonitor] (to only plot a subset of recorded cells).

	Do not plot 0 as a value for non-existing synapses in image and hexbin-style plots.

	A new function add_background_pattern to add a hatching pattern to the figure background
(for colormaps that include the background color).

Testing, suggestions and bug reports:

	Ibrahim Ozturk

brian2tools 0.1

This is the first release of the brian2tools package (a collection of optional tools for the
Brian 2 simulator), providing several plotting functions to plot model properties
(such as synapses or morphologies) and simulation results (such as raster plots or voltage traces). It also introduces
a convenience function brian_plot which takes a Brian 2 object as an argument and produces
a plot based on it. See Plotting tools for details.

Contributions

The code in this first release has been written by Marcel Stimberg (@mstimberg [https://github.com/mstimberg]).

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

User’s guide

	Installation instructions
	Installation with Anaconda

	Installation with pip

	Plotting tools
	Plotting recorded activity

	Plotting synaptic connections and variables

	Plotting neuronal morphologies

	NeuroML exporter
	Working example

	Supported Features

	Limitations

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

 	User’s guide

Installation instructions

The brian2tools package is a pure Python package that should be installable
without problems most of the time, either using the
Anaconda distribution [https://store.continuum.io/cshop/anaconda/] or using
pip. However, it depends on the brian2 package which has more complex
requirements for installation. The recommended approach is therefore to first
install brian2 following the instruction in the
Brian 2 documentation [https://brian2.readthedocs.org] and then use the same
approach (i.e. either installation with Anaconda or installation with pip)
for brian2tools.

Installation with Anaconda

Since brian2tools (and brian2 on which it depends) are not part of the
main Anaconda distribution, you have to install it from the
brian-team channel [https://conda.binstar.org/brian-team]. To do so use:

conda install -c brian-team brian2tools

You can also permanently add the channel to your list of channels:

conda config --add channels brian-team

This has only to be done once. After that, you can install and update the brian2
packages as any other Anaconda package:

conda install brian2tools

Installing optional requirements

The 3D plotting of morphologies (see Morphologies in 2D or 3D) depends on the
mayavi package [http://docs.enthought.com/mayavi/mayavi/]. You can install
it from anaconda as well:

conda install mayavi

Installation with pip

If you decide not to use Anaconda, you can install brian2tools from the Python
package index: https://pypi.python.org/pypi/brian2tools

To do so, use the pip utility:

pip install brian2tools

You might want to add the --user flag, to install Brian 2 for the local user
only, which means that you don’t need administrator privileges for the
installation.

If you have an older version of pip, first update pip itself:

On Linux/MacOsX:
pip install -U pip

On Windows
python -m pip install -U pip

If you don’t have pip but you have the easy_install utility, you can use
it to install pip:

easy_install pip

If you have neither pip nor easy_install, use the approach described
here to install pip: https://pip.pypa.io/en/latest/installing.htm

Installing optional requirements

The 3D plotting of morphologies (see Morphologies in 2D or 3D) depends on the
mayavi package [http://docs.enthought.com/mayavi/mayavi/]. Follow its
installation instructions
to install it.

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

 	User’s guide

Plotting tools

The brian2tools package offers plotting tools for some standard plots of various brian2 objects. It provides two
approaches to produce plots:

	a convenience method brian_plot that takes an object such as a
SpikeMonitor [https://brian2.readthedocs.org/en/2.0rc/reference/brian2.monitors.spikemonitor.SpikeMonitor.html#brian2.monitors.spikemonitor.SpikeMonitor] and produces a useful plot out of it (in this case, a raster plot). This
method is rather meant for quick investigation than for creating publication-ready plots. The details of these plots
might change in future versions, so do not rely in this function if you expect your plots to stay the same.

	specific methods such as plot_raster or
plot_morphology, that allow for more detailed settings of plot parameters.

In both cases, the plotting functions will return a reference to the matplotlib Axes [http://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes] object, allowing
to further tweak the code (e.g. setting a title, changing the labels, etc.). The functions will automatically take care
of labelling the plot with the names of the plotted variables and their units (for this to work, the “unprocessed”
objects have to be used: e.g. plotting neurons.v can automatically state the name v and the unit of v,
whereas neurons.v[:] can only state its unit and np.array(neurons.v) will state neither name nor unit).

Overview

	Plotting recorded activity
	Spikes

	Rates

	State variables

	Plotting synaptic connections and variables
	Connections

	Synaptic variables (weights, delays, etc.)

	Multiple synapses per source-target pair

	Plotting neuronal morphologies
	Dendograms

	Morphologies in 2D or 3D

Plotting recorded activity

We’ll use the following example (the CUBA example from Brian 2) as a demonstration.

from brian2 import *

Vt = -50*mV
Vr = -60*mV

eqs = '''dv/dt = (ge+gi-(v + 49*mV))/(20*ms) : volt (unless refractory)
 dge/dt = -ge/(5*ms) : volt
 dgi/dt = -gi/(10*ms) : volt
 '''
P = NeuronGroup(4000, eqs, threshold='v>Vt', reset='v = Vr', refractory=5*ms,
 method='linear')
P.v = 'Vr + rand() * (Vt - Vr)'
P.ge = 0*mV
P.gi = 0*mV

we = (60*0.27/10)*mV # excitatory synaptic weight (voltage)
wi = (-20*4.5/10)*mV # inhibitory synaptic weight
Ce = Synapses(P[:3200], P, on_pre='ge += we')
Ci = Synapses(P[3200:], P, on_pre='gi += wi')
Ce.connect(p=0.02)
Ci.connect(p=0.02)

spike_mon = SpikeMonitor(P)
rate_mon = PopulationRateMonitor(P)
state_mon = StateMonitor(P, 'v', record=[0, 100, 1000]) # record three cells

run(1 * second)

We will also assume that brian2tools has been imported like this:

from brian2tools import *

Spikes

To plot a basic raster plot, you can call brian_plot with the
SpikeMonitor [https://brian2.readthedocs.org/en/2.0rc/reference/brian2.monitors.spikemonitor.SpikeMonitor.html#brian2.monitors.spikemonitor.SpikeMonitor] as its argument:

brian_plot(spike_mon)

[image: ../_images/brian_plot_spike_mon.png]
To have more control over the plot, or to plot spikes that are not stored in a
SpikeMonitor [https://brian2.readthedocs.org/en/2.0rc/reference/brian2.monitors.spikemonitor.SpikeMonitor.html#brian2.monitors.spikemonitor.SpikeMonitor], use plot_raster:

plot_raster(spike_mon.i, spike_mon.t, time_unit=second, marker=',', color='k')

[image: ../_images/plot_raster.png]

Rates

Calling brian_plot with the PopulationRateMonitor [https://brian2.readthedocs.org/en/2.0rc/reference/brian2.monitors.ratemonitor.PopulationRateMonitor.html#brian2.monitors.ratemonitor.PopulationRateMonitor] will plot
the rate smoothed with a Gaussian window with 1ms standard deviation.:

brian_plot(rate_mon)

To plot the rate with a different smoothing and/or to set other details of the plot use
plot_raster:

plot_rate(rate_mon.t, rate_mon.smooth_rate(window='flat', width=10.1*ms),
 linewidth=3, color='gray')

State variables

Finally, calling brian_plot with the StateMonitor [https://brian2.readthedocs.org/en/2.0rc/reference/brian2.monitors.statemonitor.StateMonitor.html#brian2.monitors.statemonitor.StateMonitor] will plot
the recorded voltage traces:

brian_plot(state_mon)

By indexing the StateMonitor [https://brian2.readthedocs.org/en/2.0rc/reference/brian2.monitors.statemonitor.StateMonitor.html#brian2.monitors.statemonitor.StateMonitor], the plot can be restricted to a subset of the recorded
neurons:

brian_plot(state_mon[1000])

Again, for more detailed control you can directly use the plot_state function. Here we also
demonstrate the use of the returned Axes [http://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes] object to add a legend to the plot:

ax = plot_state(state_mon.t, state_mon.v.T, var_name='membrane potential', lw=2)
ax.legend(['neuron 0', 'neuron 100', 'neuron 1000'], frameon=False, loc='best')

Plotting synaptic connections and variables

For the following examples, we create synapses and synaptic weights according to “distances” (differences between the
source and target indices):

from brian2 import *

group = NeuronGroup(100, 'dv/dt = -v / (10*ms) : volt',
 threshold='v > -50*mV', reset='v = -60*mV')

synapses = Synapses(group, group, 'w : volt', on_pre='v += w')

Connect to cells with indices no more than +/- 10 from the source index with
a probability of 50% (but do not create self-connections)
synapses.connect(j='i+k for k in sample(-10, 10, p=0.5) if k != 0',
 skip_if_invalid=True) # ignore values outside of the limits
Set synaptic weights depending on the distance (in terms of indices) between
the source and target cell and add some randomness
synapses.w = '(exp(-(i - j)**2/10.) + 0.5 * rand())*mV'
Set synaptic weights randomly
synapses.delay = '1*ms + 2*ms*rand()'

Connections

A call of brian_plot with a Synapses [https://brian2.readthedocs.org/en/2.0rc/reference/brian2.synapses.synapses.Synapses.html#brian2.synapses.synapses.Synapses] object will plot all
connections, plotting either the matrix as an image, the connections as a scatter plot, or a 2-dimensional histogram
(using matplotlib’s hexbin [http://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.hexbin.html#matplotlib.axes.Axes.hexbin] function). The decision which type of plot to use is based on some
heuristics applied to the number of synapses and might possibly change in future versions:

brian_plot(synapses)

[image: ../_images/brian_plot_synapses.png]
As explained above, for a large connection matrix this would instead use an approach based on a hexagonal 2D histogram:

big_group = NeuronGroup(10000, '')
many_synapses = Synapses(big_group, big_group)
many_synapses.connect(j='i+k for k in range(-2000, 2000) if rand() < exp(-(k/1000.)**2)',
 skip_if_invalid=True)
brian_plot(many_synapses)

[image: ../_images/brian_plot_synapses_big.png]
Under the hood brian_plot calls plot_synapses which can
also be used directly for more control:

plot_synapses(synapses.i, synapses.j, plot_type='scatter', color='gray', marker='s')

Synaptic variables (weights, delays, etc.)

Synaptic variables such as synaptic weights or delays can also be plotted with brian_plot:

subplot(1, 2, 1)
brian_plot(synapses.w)
subplot(1, 2, 2)
brian_plot(synapses.delay)
tight_layout()

Again, using plot_synapses provides more control. The following code snippet also calls
the add_background_pattern function to make the distinction between white color values and
the background clearer:

ax = plot_synapses(synapses.i, synapses.j, synapses.w, var_name='synaptic weights',
 plot_type='scatter', cmap='hot')
add_background_pattern(ax)
ax.set_title('Recurrent connections')

[image: ../_images/plot_synapses_weights_custom.png]

Multiple synapses per source-target pair

In Brian, source-target pairs can be connected by more than a single synapse. In this case you cannot plot synaptic
state variables (because it is ill-defined what to plot) but you can still plot connections which will show how many
synapses exists. For example, if we make the same connect [https://brian2.readthedocs.org/en/2.0rc/reference/brian2.synapses.synapses.Synapses.html#brian2.synapses.synapses.Synapses.connect] from above a second time,
the new synapses will be added to the existing ones so some source-target pairs are now connected by two synapses:

synapses.connect(j='i+k for k in sample(-10, 10, p=0.5) if k != 0',
 skip_if_invalid=True)

Calling brian_plot or plot_synapses will now show the
number of synapses between each pair of neurons:

brian_plot(synapses)

[image: ../_images/brian_plot_multiple_synapses.png]

Plotting neuronal morphologies

In the following, we’ll use a reconstruction from the Destexhe lab (a neocortical pyramidal neuron from the cat
brain [1]) that we load into Brian:

from brian2 import *

morpho = Morphology.from_file('51-2a.CNG.swc')

Dendograms

Calling brian_plot with a Morphology [https://brian2.readthedocs.org/en/2.0rc/reference/brian2.spatialneuron.morphology.Morphology.html#brian2.spatialneuron.morphology.Morphology] will plot a
dendogram:

brian_plot(morpho)

The plot_dendrogram function does the same thing, but in contrast to the other
plot functions it does not allow any customization at the moment, so there is no benefit over using
brian_plot.

Morphologies in 2D or 3D

In addition to the dendogram which only plots the general structure but not the actual morphology of the neuron in
space, you can plot the morphology using plot_morphology. For a 3D morphology, this
will plot the morphology in 3D using the Mayavi package [http://docs.enthought.com/mayavi/mayavi/]

plot_morphology(morpho)

[image: ../_images/plot_morphology_3d.png]
For artificially created morphologies (where one might only use coordinates in 2D) or to get a quick view of a
morphology, you can also plot it in 2D (this will be done automatically if the coordinates are 2D only):

plot_morphology(morpho, plot_3d=False)

Both 2D and 3D morphology plots can be further customized, e.g. they can show the width of the compartments and do not
use the default alternation between blue and red for each section:

plot_morphology(morpho, plot_3d=True, show_compartments=True,
 show_diameter=True, colors=('darkblue',))

[image: ../_images/plot_morphology_3d_diameters.png]

	[1]	Available at http://neuromorpho.org/neuron_info.jsp?neuron_name=51-2a

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

 	User’s guide

NeuroML exporter

This is a short overview of the nmlexport package, providing
functionality to export Brian 2 models to NeuroML2.

NeuroML is a XML-based description that provides a common data format
for defining and exchanging descriptions of neuronal cell and network models
(NML project website [https://neuroml.org/]).

Overview

	Working example

	Supported Features

	Limitations

Working example

As a demonstration, we use a simple unconnected Integrate & Fire neuron model
with refractoriness and given initial values.

from brian2 import *
import brian2tools.nmlexport

set_device('neuroml2', filename="nml2model.xml")

n = 100
duration = 1*second
tau = 10*ms

eqs = '''
dv/dt = (v0 - v) / tau : volt (unless refractory)
v0 : volt
'''
group = NeuronGroup(n, eqs, threshold='v > 10*mV', reset='v = 0*mV',
 refractory=5*ms, method='linear')
group.v = 0*mV
group.v0 = '20*mV * i / (N-1)'

rec_idx = [2, 63]
statemonitor = StateMonitor(group, 'v', record=rec_idx)
spikemonitor = SpikeMonitor(group, record=rec_idx)

run(duration)

The use of the exporter requires only a few changes to an existing Brian 2
script. In addition to the standard brian2 import at the beginning of your
script, you need to import the brian2tools.nmlexport package. You can then set
a “device” called neuroml2 which will generate NeuroML2/LEMS code instead of
executing your model. You will also have to specify a keyword argument
filename with the desired name of the output file.

The above code will result in a file nml2model.xml and an additional file
LEMSUnitsConstants.xml with units definitions in form of constants
(necessary due to the way units are handled in LEMS equations).

The file nml2model.xml will look like this:

<Lems>
 <Include file="NeuroML2CoreTypes.xml"/>
 <Include file="Simulation.xml"/>
 <Include file="LEMSUnitsConstants.xml"/>
 <ComponentType extends="baseCell" name="neuron1">
 <Property dimension="voltage" name="v0"/>
 <Property dimension="time" name="tau"/>
 <EventPort direction="out" name="spike"/>
 <Exposure dimension="voltage" name="v"/>
 <Dynamics>
 <StateVariable dimension="voltage" exposure="v" name="v"/>
 <OnStart>
 <StateAssignment value="0" variable="v"/>
 </OnStart>
 <Regime name="refractory">
 <StateVariable dimension="time" name="lastspike"/>
 <OnEntry>
 <StateAssignment value="t" variable="lastspike"/>
 </OnEntry>
 <OnCondition test="t .gt. (lastspike + 5.*ms)">
 <Transition regime="integrating"/>
 </OnCondition>
 </Regime>
 <Regime initial="true" name="integrating">
 <TimeDerivative value="(v0 - v) / tau" variable="v"/>
 <OnCondition test="v .gt. (10 * mV)">
 <EventOut port="spike"/>
 <StateAssignment value="0*mV" variable="v"/>
 <Transition regime="refractory"/>
 </OnCondition>
 </Regime>
 </Dynamics>
 </ComponentType>
 <ComponentType extends="basePopulation" name="neuron1Multi">
 <Parameter dimension="time" name="tau_p"/>
 <Parameter dimension="none" name="N"/>
 <Constant dimension="voltage" name="mVconst" symbol="mVconst" value="1mV"/>
 <Structure>
 <MultiInstantiate componentType="neuron1" number="N">
 <Assign property="v0" value="20*mVconst * index / (N-1) "/>
 <Assign property="tau" value="tau_p"/>
 </MultiInstantiate>
 </Structure>
 </ComponentType>
 <network id="neuron1MultiNet">
 <Component N="100" id="neuron1Multipop" tau_p="10. ms" type="neuron1Multi"/>
 </network>
 <Simulation id="sim1" length="1s" step="0.1 ms" target="neuron1MultiNet">
 <Display id="disp0" timeScale="1ms" title="v" xmax="1000" xmin="0" ymax="11" ymin="0">
 <Line id="line3" quantity="neuron1Multipop[3]/v" scale="1mV" timeScale="1ms"/>
 <Line id="line64" quantity="neuron1Multipop[64]/v" scale="1mV" timeScale="1ms"/>
 </Display>
 <OutputFile fileName="recording_nml2model.dat" id="of0">
 <OutputColumn id="3" quantity="neuron1Multipop[3]/v"/>
 <OutputColumn id="64" quantity="neuron1Multipop[64]/v"/>
 </OutputFile>
 <EventOutputFile fileName="recording_nml2model.spikes" format="TIME_ID" id="eof">
 <EventSelection eventPort="spike" id="line3" select="neuron1Multipop[3]"/>
 <EventSelection eventPort="spike" id="line64" select="neuron1Multipop[64]"/>
 </EventOutputFile>
 </Simulation>
 <Target component="sim1"/>
</Lems>

The exporting device creates a new ComponentType for each cell definition
implemented as a Brian 2 NeuronGroup. Later that particular ComponentType
is bundled with the initial value assignment into a a new ComponentType
(here called neuron1Multi) by MultiInstantiate and eventually a network
(neuron1MultiNet) is created out of a defined Component
(neuron1Multipop).

Note that the integration method does not matter for the NeuroML export,
as NeuroML/LEMS only describes the model not how it is numerically integrated.

To validate the output, you can use the tool jNeuroML [https://github.com/NeuroML/jNeuroML].
Make sure that jnml has access to the NeuroML2CoreTypes folder by
setting the JNML_HOME environment variable.

With jnml installed you can run the simulation as follows:

jnml nml2model.xml

Supported Features

Currently, the NeuroML2 export is restricted to simple neural models and only
supports the following classes (and a single run statement per script):

	NeuronGroup - The definition of a neuronal model. Mechanisms like
threshold, reset and refractoriness are taken into account. Moreover, you may
set the initial values of the model parameters (like v0 above).

	StateMonitor - If your script uses a StateMonitor to record variables,
each recorded variable is transformed into to a Line tag of the
Display in the NeuroML2 simulation and an OutputFile tag is added to
the model. The name of the output file is recording_<<filename>>.dat.

	SpikeMonitor - A SpikeMonitor is transformed into an
EventOutputFile tag, storing the spikes to a file named
recording_<<filename>>.spikes.

Limitations

As stated above, the NeuroML2 export is currently quite limited. In particular,
none of the following Brian 2 features are supported:

	Synapses

	Network input (PoissonGroup, SpikeGeneratorGroup, etc.)

	Multicompartmental neurons (SpatialNeuronGroup)

	Non-standard simulation protocols (multiple runs, store/restore
mechanism, etc.).

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

Developer’s guide

	Coding guidelines

	NeuroML exporter

	Release procedure

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

 	Developer’s guide

Coding guidelines

The coding style should mostly follow the
Brian 2 guidelines [http://brian2.readthedocs.io/en/latest/developer/guidelines/style.html], with one major
exception: for brian2tools the code should be both Python 2 (for versions >= 2.7) and Python 3 compatible. This means
for example to use range and not xrange for iteration or conversely use list(range) instead of just
range when a list is required. For now, this works without from __future__ imports or helper modules like
six but the details of this will be fixed when the need arises.

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

 	Developer’s guide

NeuroML exporter

Overview

	NMLExporter
	Neuron Group

	DOM structure

	Model namespace

	LEMSDevice
	LEMS Unit Constants

	Other modules

	TODO

The main work of the exporter is done in the lemsexport
module.

It consists of two main classes:

	NMLExporter - responsible for building
the NeuroML2/LEMS model.

	LEMSDevice - responsible for code
generation. It gathers all variables needed to describe the model and calls
NMLExporter with well-prepared parameters.

NMLExporter

The whole process of building NeuroML model starts with calling the
create_lems_model method. It selects crucial Brian 2 objects to further
parse and pass them to respective methods.

if network is None:
 net = Network(collect(level=1))
else:
 net = network

if not constants_file:
 self._model.add(lems.Include(LEMS_CONSTANTS_XML))
else:
 self._model.add(lems.Include(constants_file))
includes = set(includes)
for incl in INCLUDES:
 includes.add(incl)
neuron_groups = [o for o in net.objects if type(o) is NeuronGroup]
state_monitors = [o for o in net.objects if type(o) is StateMonitor]
spike_monitors = [o for o in net.objects if type(o) is SpikeMonitor]

for o in net.objects:
 if type(o) not in [NeuronGroup, StateMonitor, SpikeMonitor,
 Thresholder, Resetter, StateUpdater]:
 logger.warn("""{} export functionality
 is not implemented yet.""".format(type(o).__name__))

Thresholder, Resetter, StateUpdater are not interesting from our perspective
if len(netinputs)>0:
 includes.add(LEMS_INPUTS)
for incl in includes:
 self.add_include(incl)
First step is to add individual neuron deifinitions and initialize
them by MultiInstantiate
for e, obj in enumerate(neuron_groups):
 self.add_neurongroup(obj, e, namespace, initializers)

Neuron Group

A method add_neurongroup requires more attention. This is the method
responsible for building cell model in LEMS (as so-called ComponentType)
and initializing it when necessary.

In order to build a whole network of cells with different initial values,
we need to use the MultiInstantiate LEMS tag. A method make_multiinstantiate
does this job. It iterates over all parameters and analyses equation
to find those with iterator variable i. Such variables are initialized
in a MultiInstantiate loop at the beginning of a simulation.

More details about the methods described above can be found in the code comments.

DOM structure

Until this point the whole model is stored in NMLExporter._model, because
the method add_neurongroup takes advantage of pylems module to create
a XML structure. After that we export it to self._dommodel and rather
use NeuroML2 specific content. To extend it one may use
self._extend_dommodel() method, giving as parameter a proper DOM structure
(built for instance using python xml.dom.minidom).

DOM structure of the whole model is constructed below
self._dommodel = self._model.export_to_dom()
input support - currently only Poisson Inputs
for e, obj in enumerate(netinputs):
 self.add_input(obj, counter=e)
A population should be created in *make_multiinstantiate*
so we can add it to our DOM structure.
if self._population:
 self._extend_dommodel(self._population)
if some State or Spike Monitors occur we support them by
Simulation tag
self._model_namespace['simulname'] = "sim1"
self._simulation = NeuroMLSimulation(self._model_namespace['simulname'],
 self._model_namespace['networkname'])
for e, obj in enumerate(state_monitors):
 self.add_statemonitor(obj, filename=recordingsname, outputfile=True)
for e, obj in enumerate(spike_monitors):
 self.add_spikemonitor(obj, filename=recordingsname)

Some of the NeuroML structures are already implemented in supporting.py. For example:

	NeuroMLSimulation - describes Simulation, adds plot and lines, adds outputfiles for spikes and voltage recordings;

	NeuroMLSimpleNetwork - creates a network of cells given some ComponentType;

	NeuroMLTarget - picks target for simulation runner.

At the end of the model parsing, a simulation tag is built and added with a target pointing to it.

simulation = self._simulation.build()
self._extend_dommodel(simulation)
target = NeuroMLTarget(self._model_namespace['simulname'])
target = target.build()
self._extend_dommodel(target)

You may access the final DOM structure by accessing the model` property or
export it to a XML file by calling the export_to_file() method of the
NMLExporter object.

Model namespace

In many places of the code a dictionary self._model_namespace is used.
As LEMS used identifiers id to name almost all of its components, we
want to be consistent in naming them. The dictionary stores names of
model’s components and allows to refer it later in the code.

LEMSDevice

LEMSDevice allows you to take advantage of Brian 2’s code generation mechanism.
It makes usage of the module easier, as it means for user that they just
need to import brian2tools.nmlexport and set the device
neuroml2 like this:

import brian2lems.nmlexport

set_device('neuroml2', filename="ifcgmtest.xml")

In the class init a flag self.build_on_run was set to True which
means that exporter starts working immediately after encountering the run
statement.

def __init__(self):
 super(LEMSDevice, self).__init__()
 self.runs = []
 self.assignments = []
 self.build_on_run = True
 self.build_options = None
 self.has_been_run = False

First of all method network_run is called which gathers of necessary
variables from the script or function namespaces and passes it to build
method. In build we select all needed variables to separate dictionaries,
create a name of the recording files and eventually build the exporter.

initializers = {}
for descriptions, duration, namespace, assignments in self.runs:
 for assignment in assignments:
 if not assignment[2] in initializers:
 initializers[assignment[2]] = assignment[-1]
if len(self.runs) > 1:
 raise NotImplementedError("Currently only single run is supported.")
if len(filename.split("."))!=1:
 filename_ = 'recording_' + filename.split(".")[0]
else:
 filename_ = 'recording_' + filename
exporter = NMLExporter()
exporter.create_lems_model(self.network, namespace=namespace,
 initializers=initializers,
 recordingsname=filename_)
exporter.export_to_file(filename)

LEMS Unit Constants

Last lines of the method are saving LemsConstantUnit.xml file
alongside with our model file. This is due to the fact that in some places
of mathematical expressions LEMS requires unitless variables, e.g. instead of
1 mm it wants 0.001. So we store most popular units transformed to
constants in a separate file which is included in the model file header.

if lems_const_save:
 with open(os.path.join(nmlcdpath, LEMS_CONSTANTS_XML), 'r') as f:
 with open(LEMS_CONSTANTS_XML, 'w') as fout:
 fout.write(f.read())

Other modules

If you want to know more about other scripts included in package
(lemsrendering, supporting,
cgmhelper), please read their docstrings or comments
included in the code.

TODO

	synapses support;

First attempt to make synapses export work was made during GSOC period. The problem with that
feature is related to the fact that NeuroML and brian2 internal synapses implementation differs substantially.
For instance, in NeuroML there are no predefined rules for connections, but user needs to explicitly define a synapse.
Moreover, in Brian 2, for efficiency reasons, postsynaptic potentials are
normally modeled in the post-synaptic cell (for linearly summating synapses,
this is equivalent but much more efficient), whereas in NeuroML they are modeled
as part of the synapse (simulation speed is not an issue here).

	network input support;

Although there are some classes supporting PoissonInput in the supporting.py, full functionality
of input is still not provided, as it is stongly linked with above synapses problems.

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

 	Developer’s guide

Release procedure

In brian2tools we use the setuptools_scm package [https://pypi.python.org/pypi/setuptools_scm] to set the package
version information, the basic release procedure therefore consists of setting a git tag and pushing that tag to github.
The test builds on travis [https://travis-ci.org/brian-team/brian2tools] will then automatically push the conda
packages to anaconda.org [https://anaconda.org/brian-team/brian2tools].

The dev/release/prepare_release.py script automates the tag creation and makes sure that no uncommited changes
exist when doing do.

In the future, we will probably also push the pypi packages automatically from the test builds; for now this has to
be done manually. The prepare_release.py script mentioned above will already create the source distribution and
universal wheel files, they can then be uploaded with twine upload dist/* or using the
dev/release/upload_to_pypi.py script.

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

brian2tools package

Subpackages

	brian2tools.nmlexport package
	Submodules
	brian2tools.nmlexport.cgmhelper module

	brian2tools.nmlexport.lemsexport module

	brian2tools.nmlexport.lemsrendering module

	brian2tools.nmlexport.supporting module

	brian2tools.plotting package
	Submodules
	brian2tools.plotting.base module

	brian2tools.plotting.data module

	brian2tools.plotting.morphology module

	brian2tools.plotting.synapses module

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

 	brian2tools package

brian2tools.nmlexport package

Submodules

	brian2tools.nmlexport.cgmhelper module

	brian2tools.nmlexport.lemsexport module

	brian2tools.nmlexport.lemsrendering module

	brian2tools.nmlexport.supporting module

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

 	brian2tools package

 	brian2tools.nmlexport package

brian2tools.nmlexport.cgmhelper module

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

 	brian2tools package

 	brian2tools.nmlexport package

brian2tools.nmlexport.lemsexport module

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

 	brian2tools package

 	brian2tools.nmlexport package

brian2tools.nmlexport.lemsrendering module

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

 	brian2tools package

 	brian2tools.nmlexport package

brian2tools.nmlexport.supporting module

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

 	brian2tools package

brian2tools.plotting package

Submodules

	brian2tools.plotting.base module

	brian2tools.plotting.data module

	brian2tools.plotting.morphology module

	brian2tools.plotting.synapses module

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

 	brian2tools package

 	brian2tools.plotting package

brian2tools.plotting.base module

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

 	brian2tools package

 	brian2tools.plotting package

brian2tools.plotting.data module

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

 	brian2tools package

 	brian2tools.plotting package

brian2tools.plotting.morphology module

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	brian2tools documentation

 	brian2tools package

 	brian2tools.plotting package

brian2tools.plotting.synapses module

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	brian2tools documentation

Index

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 _images/plot_synapses_weights_custom.png
target neuron index

100

80

60

40

20

20

40 60
source neuron index

synaptic weights (mV)

_images/brian_plot_synapses_big.png
target neuron index

4000 6000 8000 10000
source neuron index

_images/brian_plot_synapses.png
100

Xapul uoinau 3abiey

100

source neuron index

_images/brian_plot_spike_mon.png
neuron index

4000

3500

3000

2500

2000

1500

1000

500

200

400

time (ms)

600

800

1000

_images/plot_raster.png
neuron index

time (s)

_images/brian_plot_multiple_synapses.png
sasdeuAs Jo Jaquinu

=) o
8 I

100
80
20

Xapul uoinau 3abiey

40 60 80 100

source neuron index

20

_images/plot_morphology_3d.png

_images/plot_morphology_3d_diameters.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

reference/modules.html

 Navigation

 		
 index

 		brian2tools documentation »

brian2tools

		brian2tools package
		Subpackages
		brian2tools.nmlexport package
		Submodules

		brian2tools.plotting package
		Submodules

 © Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/down.png

