

 Navigation

 	
 index

 	
 next |

 	brian2tools documentation

brian2tools documentation

The brian2tools package is a collection of useful tools for
the Brian 2 simulator [https://brian2.readthedocs.org]. The project
is still in its infancy but it already provides helpful functions
for plotting. In the future it will be extended to also provide
analysis and export/import functions.

Please contact us at
brian-development@googlegroups.com (https://groups.google.com/forum/#!forum/brian-development)
if you are interested in contributing.

Please report bugs at the github issue tracker [https://github.com/brian-team/brian2tools/issues] or to
briansupport@googlegroups.com (https://groups.google.com/forum/#!forum/briansupport).

Contents

	Release notes

	User’s guide
	Installation instructions

	Plotting tools

	Developer’s guide
	Coding guidelines

	Release procedure

API reference

	brian2tools package
	brian2tools.plotting package
	brian2tools.plotting.base module

	brian2tools.plotting.data module

	brian2tools.plotting.morphology module

	brian2tools.plotting.synapses module

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

Release notes

brian2tools 0.1

This is the first release of the brian2tools package (a collection of optional tools for the
Brian 2 simulator), providing several plotting functions to plot model properties
(such as synapses or morphologies) and simulation results (such as raster plots or voltage traces). It also introduces
a convenience function brian_plot which takes a Brian 2 object as an argument and produces
a plot based on it. See Plotting tools for details.

Contributions

The code in this first release has been written by Marcel Stimberg (@mstimberg [https://github.com/mstimberg]).

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

User’s guide

	Installation instructions
	Installation with Anaconda

	Installation with pip

	Plotting tools
	Plotting recorded activity

	Plotting synaptic connections and variables

	Plotting neuronal morphologies

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

 	User’s guide

Installation instructions

The brian2tools package is a pure Python package that should be installable
without problems most of the time, either using the
Anaconda distribution [https://store.continuum.io/cshop/anaconda/] or using
pip. However, it depends on the brian2 package which has more complex
requirements for installation. The recommended approach is therefore to first
install brian2 following the instruction in the
Brian 2 documentation [https://brian2.readthedocs.org] and then use the same
approach (i.e. either installation with Anaconda or installation with pip)
for brian2tools.

Installation with Anaconda

Since brian2tools (and brian2 on which it depends) are not part of the
main Anaconda distribution, you have to install it from the
brian-team channel [https://conda.binstar.org/brian-team]. To do so use:

conda install -c brian-team brian2tools

You can also permanently add the channel to your list of channels:

conda config --add channels brian-team

This has only to be done once. After that, you can install and update the brian2
packages as any other Anaconda package:

conda install brian2tools

Installing optional requirements

The 3D plotting of morphologies (see Morphologies in 2D or 3D) depends on the
mayavi package [http://docs.enthought.com/mayavi/mayavi/]. You can install
it from anaconda as well:

conda install mayavi

Installation with pip

If you decide not to use Anaconda, you can install brian2tools from the Python
package index: https://pypi.python.org/pypi/brian2tools

To do so, use the pip utility:

pip install brian2tools

You might want to add the --user flag, to install Brian 2 for the local user
only, which means that you don’t need administrator privileges for the
installation.

If you have an older version of pip, first update pip itself:

On Linux/MacOsX:
pip install -U pip

On Windows
python -m pip install -U pip

If you don’t have pip but you have the easy_install utility, you can use
it to install pip:

easy_install pip

If you have neither pip nor easy_install, use the approach described
here to install pip: https://pip.pypa.io/en/latest/installing.htm

Installing optional requirements

The 3D plotting of morphologies (see Morphologies in 2D or 3D) depends on the
mayavi package [http://docs.enthought.com/mayavi/mayavi/]. Follow its
installation instructions
to install it.

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

 	User’s guide

Plotting tools

The brian2tools package offers plotting tools for some standard plots of various brian2 objects. It provides two
approaches to produce plots:

	a convenience method brian_plot that takes an object such as a
SpikeMonitor [https://brian2.readthedocs.org/en/2.0rc/reference/brian2.monitors.spikemonitor.SpikeMonitor.html#brian2.monitors.spikemonitor.SpikeMonitor] and produces a useful plot out of it (in this case, a raster plot). This
method is rather meant for quick investigation than for creating publication-ready plots. The details of these plots
might change in future versions, so do not rely in this function if you expect your plots to stay the same.

	specific methods such as plot_raster or
plot_morphology, that allow for more detailed settings of plot parameters.

In both cases, the plotting functions will return a reference to the matplotlib Axes [http://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes] object, allowing
to further tweak the code (e.g. setting a title, changing the labels, etc.). The functions will automatically take care
of labelling the plot with the names of the plotted variables and their units (for this to work, the “unprocessed”
objects have to be used: e.g. plotting neurons.v can automatically state the name v and the unit of v,
whereas neurons.v[:] can only state its unit and np.array(neurons.v) will state neither name nor unit).

Overview

	Plotting recorded activity
	Spikes

	Rates

	State variables

	Plotting synaptic connections and variables
	Connections

	Synaptic variables (weights, delays, etc.)

	Multiple synapses per source-target pair

	Plotting neuronal morphologies
	Dendograms

	Morphologies in 2D or 3D

Plotting recorded activity

We’ll use the following example (the CUBA example from Brian 2) as a demonstration.

from brian2 import *

eqs = '''dv/dt = (ge+gi-(v + 49*mV))/(20*ms) : volt (unless refractory)
 dge/dt = -ge/(5*ms) : volt
 dgi/dt = -gi/(10*ms) : volt
 '''
P = NeuronGroup(4000, eqs, threshold='v>-50*mV', reset='v = -60*mV', refractory=5*ms,
 method='linear')
P.v = 'Vr + rand() * (Vt - Vr)'
P.ge = 0*mV
P.gi = 0*mV

we = (60*0.27/10)*mV # excitatory synaptic weight (voltage)
wi = (-20*4.5/10)*mV # inhibitory synaptic weight
Ce = Synapses(P[:3200], P, on_pre='ge += we')
Ci = Synapses(P[3200:], P, on_pre='gi += wi')
Ce.connect(p=0.02)
Ci.connect(p=0.02)

spike_mon = SpikeMonitor(P)
rate_mon = PopulationRateMonitor(P)
state_mon = StateMonitor(P, 'v', record=[0, 100, 1000]) # record three cells

run(1 * second)

Spikes

To plot a basic raster plot, you can call brian_plot with the
SpikeMonitor [https://brian2.readthedocs.org/en/2.0rc/reference/brian2.monitors.spikemonitor.SpikeMonitor.html#brian2.monitors.spikemonitor.SpikeMonitor] as its argument:

brian_plot(spike_mon)

[image: ../_images/brian_plot_spike_mon.png]
To have more control over the plot, or to plot spikes that are not stored in a
SpikeMonitor [https://brian2.readthedocs.org/en/2.0rc/reference/brian2.monitors.spikemonitor.SpikeMonitor.html#brian2.monitors.spikemonitor.SpikeMonitor], use plot_raster:

plot_raster(spike_mon.i, spike_mon.t, time_unit=second, marker=',', color='k')

[image: ../_images/plot_raster.png]

Rates

Calling brian_plot with the PopulationRateMonitor [https://brian2.readthedocs.org/en/2.0rc/reference/brian2.monitors.ratemonitor.PopulationRateMonitor.html#brian2.monitors.ratemonitor.PopulationRateMonitor] will plot
the rate smoothed with a Gaussian window with 1ms standard deviation.:

brian_plot(rate_mon)

To plot the rate with a different smoothing and/or to set other details of the plot use
plot_raster:

plot_rate(rate_mon.t, rate_mon.smooth_rate(window='flat', width=10.1*ms),
 linewidth=3, color='gray')

State variables

Finally, calling brian_plot with the StateMonitor [https://brian2.readthedocs.org/en/2.0rc/reference/brian2.monitors.statemonitor.StateMonitor.html#brian2.monitors.statemonitor.StateMonitor] will plot
the recorded voltage traces:

brian_plot(state_mon)

Again, for more detailed control you can directly use the plot_state function. Here we also
demonstrate the use of the returned Axes [http://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes] object to add a legend to the plot:

ax = plot_state(state_mon.t, state_mon.v.T, var_name='membrane potential', lw=2)
ax.legend(['neuron 0', 'neuron 100', 'neuron 1000'], frameon=False, loc='best')

plot_state()

Plotting synaptic connections and variables

For the following examples, we create synapses and synaptic weights according to “distances” (differences between the
source and target indices):

from brian2 import *

group = NeuronGroup(100, 'dv/dt = -v / (10*ms) : volt',
 threshold='v > -50*mV', reset='v = -60*mV')

synapses = Synapses(group, group, 'w : volt', on_pre='v += w')

Connect to cells with indices no more than +/- 10 from the source index with
a probability of 50% (but do not create self-connections)
synapses.connect(j='i+k for k in sample(-10, 10, p=0.5) if k != 0',
 skip_if_invalid=True) # ignore values outside of the limits
Set synaptic weights depending on the distance (in terms of indices) between
the source and target cell and add some randomness
synapses.w = '(exp(-(i - j)**2/10.) + 0.5 * rand())*mV'
Set synaptic weights randomly
synapses.delay = '1*ms + 2*ms*rand()'

Connections

A call of brian_plot with a Synapses [https://brian2.readthedocs.org/en/2.0rc/reference/brian2.synapses.synapses.Synapses.html#brian2.synapses.synapses.Synapses] object will plot all
connections, plotting either the matrix as an image, the connections as a scatter plot, or a 2-dimensional histogram
(using matplotlib’s hexbin [http://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes.hexbin] function). The decision which type of plot to use is based on some
heuristics applied to the number of synapses and might possibly change in future versions:

brian_plot(synapses)

[image: ../_images/brian_plot_synapses.png]
As explained above, for a large connection matrix this would instead use an approach based on a hexagonal 2D histogram:

big_group = NeuronGroup(10000, '')
many_synapses = Synapses(big_group, big_group)
many_synapses.connect(j='i+k for k in range(-2000, 2000) if rand() < exp(-(k/1000.)**2)',
 skip_if_invalid=True)
brian_plot(many_synapses)

[image: ../_images/brian_plot_synapses_big.png]
Under the hood brian_plot calls plot_synapses which can
also be used directly for more control:

plot_synapses(synapses.i, synapses.j, plot_type='scatter', color='gray', marker='s')

Synaptic variables (weights, delays, etc.)

The plot_synapses function can also be used to plot synaptic variables such as synaptic
weights or delays:

subplot(1, 2, 1)
plot_synapses(synapses.i, synapses.j, synapses.w)
subplot(1, 2, 2)
plot_synapses(synapses.i, synapses.j, synapses.delay)
tight_layout()

These plots can be customized using additional keyword arguments:

ax = plot_synapses(synapses.i, synapses.j, synapses.w, var_name='synaptic weights',
 plot_type='image', cmap='hot')
ax.set_title('Recurrent connections')

[image: ../_images/plot_synapses_weights_custom.png]

Multiple synapses per source-target pair

In Brian, source-target pairs can be connected by more than a single synapse. In this case you cannot plot synaptic
state variables (because it is ill-defined what to plot) but you can still plot connections which will show how many
synapses exists. For example, if we make the same connect [https://brian2.readthedocs.org/en/2.0rc/reference/brian2.synapses.synapses.Synapses.html#brian2.synapses.synapses.Synapses.connect] from above a second time,
the new synapses will be added to the existing ones so some source-target pairs are now connected by two synapses:

synapses.connect(j='i+k for k in sample(-10, 10, p=0.5) if k != 0',
 skip_if_invalid=True)

Calling brian_plot or plot_synapses will now show the
number of synapses between each pair of neurons:

brian_plot(synapses)

[image: ../_images/brian_plot_multiple_synapses.png]

Plotting neuronal morphologies

In the following, we’ll use a reconstruction from the Destexhe lab (a neocortical pyramidal neuron from the cat
brain [1]) that we load into Brian:

from brian2 import *

morpho = Morphology.from_file('51-2a.CNG.swc')

Dendograms

Calling brian_plot with a Morphology [https://brian2.readthedocs.org/en/2.0rc/reference/brian2.spatialneuron.morphology.Morphology.html#brian2.spatialneuron.morphology.Morphology] will plot a
dendogram:

brian_plot(morpho)

The plot_dendrogram function does the same thing, but in contrast to the other
plot functions it does not allow any customization at the moment, so there is no benefit over using
brian_plot.

Morphologies in 2D or 3D

In addition to the dendogram which only plots the general structure but not the actual morphology of the neuron in
space, you can plot the morphology using plot_morphology. For a 3D morphology, this
will plot the morphology in 3D using the Mayavi package [http://docs.enthought.com/mayavi/mayavi/]

plot_morphology(morpho)

[image: ../_images/plot_morphology_3d.png]
For artificially created morphologies (where one might only use coordinates in 2D) or to get a quick view of a
morphology, you can also plot it in 2D (this will be done automatically if the coordinates are 2D only):

plot_morphology(morpho, plot_3d=False)

Both 2D and 3D morphology plots can be further customized, e.g. they can show the width of the compartments and do not
use the default alternation between blue and red for each section:

plot_morphology(morpho, plot_3d=True, show_compartments=True,
 show_diameter=True, colors=('darkblue',))

[image: ../_images/plot_morphology_3d_diameters.png]

	[1]	Available at http://neuromorpho.org/neuron_info.jsp?neuron_name=51-2a

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

Developer’s guide

	Coding guidelines

	Release procedure

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

 	Developer’s guide

Coding guidelines

The coding style should mostly follow the
Brian 2 guidelines [http://brian2.readthedocs.io/en/latest/developer/guidelines/style.html], with one major
exception: for brian2tools the code should be both Python 2 (for versions >= 2.7) and Python 3 compatible. This means
for example to use range and not xrange for iteration or conversely use list(range) instead of just
range when a list is required. For now, this works without from __future__ imports or helper modules like
six but the details of this will be fixed when the need arises.

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

 	Developer’s guide

Release procedure

In brian2tools we use the setuptools_scm package [https://pypi.python.org/pypi/setuptools_scm] to set the package
version information, the basic release procedure therefore consists of setting a git tag and pushing that tag to github.
The test builds on travis [https://travis-ci.org/brian-team/brian2tools] will then automatically push the conda
packages to anaconda.org [https://anaconda.org/brian-team/brian2tools].

The dev/release/prepare_release.py script automates the tag creation and makes sure that no uncommited changes
exist when doing do.

In the future, we will probably also push the pypi packages automatically from the test builds; for now this has to
be done manually. The prepare_release.py script mentioned above will already create the source distribution and
universal wheel files, they can then be uploaded with twine upload dist/* or using the
dev/release/upload_to_pypi.py script.

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

brian2tools package

Subpackages

	brian2tools.plotting package
	Submodules
	brian2tools.plotting.base module

	brian2tools.plotting.data module

	brian2tools.plotting.morphology module

	brian2tools.plotting.synapses module

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

 	brian2tools package

brian2tools.plotting package

Submodules

	brian2tools.plotting.base module

	brian2tools.plotting.data module

	brian2tools.plotting.morphology module

	brian2tools.plotting.synapses module

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

 	brian2tools package

 	brian2tools.plotting package

brian2tools.plotting.base module

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

 	brian2tools package

 	brian2tools.plotting package

brian2tools.plotting.data module

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	brian2tools documentation

 	brian2tools package

 	brian2tools.plotting package

brian2tools.plotting.morphology module

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	brian2tools documentation

 	brian2tools package

 	brian2tools.plotting package

brian2tools.plotting.synapses module

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	brian2tools documentation

Index

 Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

 _static/plus.png

_static/comment-bright.png

_images/plot_raster.png
neuron index

time (s)

_static/comment.png

_images/brian_plot_multiple_synapses.png
sasdeuAs Jo Jaquinu

Xapul uoinau 3abiey

source neuron index

_static/down.png

_images/plot_synapses_weights_custom.png
(Aw) syybram dndeuhs

n o 1w o 1w o =n o
S o ~ © = « = =
4~ S oS S oS oS oS o

Recurrent connections

o
S
=2

80

Xapul uoinau 3abiey

source neuron index

_static/up-pressed.png

_images/brian_plot_synapses_big.png
x
o]
©
=
<
e
5
o
c
o]
=
8

4000 6000 8000 10000
source neuron index

_images/plot_morphology_3d.png

reference/modules.html

 Navigation

 		
 index

 		brian2tools documentation »

brian2tools

		brian2tools package
		Subpackages
		brian2tools.plotting package
		Submodules

 © Copyright 2016, Brian authors.
 Created using Sphinx 1.3.5.

_images/brian_plot_spike_mon.png
neuron index

4000

3500

3000

2500

2000

1500

1000

500

200

400

time (ms)

600

800

1000

_images/plot_morphology_3d_diameters.png

_images/brian_plot_synapses.png
100

80

Q
8

o
I

Xapul uoinau 3abiey

20

100

source neuron index

_static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

